Welcome to Lua 5.2

about - installation - changes - license - reference manual

About Lua

Lua is a powerful, fast, lightweight, embeddable scripting language developed by a team at
PUC-Rio, the Pontifical Catholic University of Rio de Janeiro in Brazil. Lua is free software
used in many products and projects around the world.

Lua's official web site provides complete information about Lua, including an executive
summary and updated documentation, especially the reference manual, which may differ
slightly from the local copy distributed in this package.

Installing Lua

Lua is distributed in source form. You need to build it before using it. Building Lua should be
straightforward because Lua is implemented in pure ANSI C and compiles unmodified in all
known platforms that have an ANSI C compiler. Lua also compiles unmodified as C++. The
instructions given below for building Lua are for Unix-like platforms. See also instructions for
other systems and customization options.

If you don't have the time or the inclination to compile Lua yourself, get a binary from

LuaBinaries. Try also Lua for Windows, an easy-to-use distribution of Lua that includes many
useful libraries.

Building Lua
In most Unix-like platforms, simply do "make" with a suitable target. Here are the details.

1. Open a terminal window and move to the top-level directory, which is named lua-
5.2.2. The Makefile there controls both the build process and the installation process.

2. Do "make" and see if your platform is listed. The platforms currently supported are:
aix ansi bsd freebsd generic linux macosx mingw posix solaris

If your platform is listed, just do "make xxx", where xxx is your platform name.
If your platform is not listed, try the closest one or posix, generic, ansi, in this order.

3. The compilation takes only a few moments and produces three files in the src
directory: lua (the interpreter), luac (the compiler), and liblua.a (the library).


http://www.lua.org/
file:///C:/Cpp/skia/third_party/lua/doc/contents.html
http://www.lua.org/authors.html
http://www.puc-rio.br/
http://www.lua.org/
http://www.lua.org/about.html
http://www.lua.org/docs.html
http://www.lua.org/manual/5.2/
file:///C:/Cpp/skia/third_party/lua/doc/contents.html
http://www.lua.org/ftp/
http://lua-users.org/wiki/LuaBinaries
http://luaforwindows.luaforge.net/

4. To check that Lua has been built correctly, do "make test" after building Lua. This will
run the interpreter and print its version string.

If you're running Linux and get compilation errors, make sure you have installed the
readline development package. If you get link errors after that, then try "make linux
MYLIBS=-1termcap".

Installing Lua

Once you have built Lua, you may want to install it in an official place in your system. In this
case, do "make install". The official place and the way to install files are defined in the
Makefile. You'll probably need the right permissions to install files.

To build and install Lua in one step, do "make xxx install", where xxx is your platform
name.

To install Lua locally, do "make local". This will create a directory install with
subdirectories bin, include, 1ib, man, and install Lua as listed below. To install Lua locally,
but in some other directory, do "make install INSTALL_TOP=xxx", where xxx is your
chosen directory.

bin:
lua luac
include:
lua.h luaconf.h lualib.h lauxlib.h lua.hpp
lib:
liblua.a
man/man1:
lua.1 luac.1

These are the only directories you need for development. If you only want to run Lua
programs, you only need the files in bin and man. The files in include and lib are needed for
embedding Lua in C or C++ programs.

Customization

Three kinds of things can be customized by editing a file:

e \Where and how to install Lua — edit Makefile.
¢ How to build Lua — edit src/Makefile.
e |ua features — edit src/luaconf.h.

You don't actually need to edit the Makefiles because you may set the relevant variables in
the command line when invoking make. Nevertheless, it's probably best to edit and save the
Makefiles to record the changes you need.

On the other hand, if you need to customize some Lua features, you'll need to edit
src/luaconf.h before building and installing Lua. The edited file will be the one installed,
and it will be used by any Lua clients that you build, to ensure consistency. Further
customization is available to experts by editing the Lua sources.

We strongly recommend that you enable dynamic loading in src/luaconf.h. This is done
automatically for all platforms listed above that have this feature and also for Windows.



Building Lua on other systems

If you're not using the usual Unix tools, then the instructions for building Lua depend on the
compiler you use. You'll need to create projects (or whatever your compiler uses) for building
the library, the interpreter, and the compiler, as follows:

library:
lapi.c Icode.c Ictype.c Idebug.c Ido.c Idump.c Ifunc.c Igc.c llex.c Imem.c
lobject.c lopcodes.c Iparser.c Istate.c Istring.c Itable.c Itm.c lundump.c Ivm.c
Izio.c lauxlib.c Ibaselib.c Ibitlib.c Icorolib.c Idblib.c liolib.c Imathlib.c loslib.c
Istrlib.c Itablib.c loadlib.c linit.c

interpreter:

library, lua.c
compiler:

library, luac.c

To use Lua as a library in your own programs you'll need to know how to create and use
libraries with your compiler. Moreover, to dynamically load C libraries for Lua you'll need to
know how to create dynamic libraries and you'll need to make sure that the Lua API
functions are accessible to those dynamic libraries — but don't link the Lua library into each
dynamic library. For Unix, we recommend that the Lua library be linked statically into the host
program and its symbols exported for dynamic linking; src/Makefile does this for the Lua
interpreter. For Windows, we recommend that the Lua library be a DLL.

As mentioned above, you may edit src/luaconf.h to customize some features before
building Lua.

Changes since Lua 5.1

Here are the main changes introduced in Lua 5.2. The reference manual lists the
incompatibilities that had to be introduced.

Main changes

yieldable pcall and metamethods
new lexical scheme for globals
ephemeron tables

new library for bitwise operations
light C functions

emergency garbage collector
goto statement

finalizers for tables

Here are the other changes introduced in Lua 5.2:
Language

no more fenv for threads or functions
tables honor the __1en metamethod

hex and \z escapes in strings

support for hexadecimal floats

order metamethods work for different types


file:///C:/Cpp/skia/third_party/lua/doc/contents.html
file:///C:/Cpp/skia/third_party/lua/doc/manual.html#8

no more verification of opcode consistency

hook event "tail return" replaced by "tail call"

empty statement

break statement may appear in the middle of a block

Libraries

arguments for function called through xpcall

optional 'mode' argument to load and loadfile (to control binary x text)
optional 'env' argument to load and loadfile (environment for loaded chunk)
loadlib may load libraries with global names (RTLD_GLOBAL)

new function package.searchpath

modules receive their paths when loaded

optional base in math. log

optional separator in string.rep

file:write returns file

closing a pipe returns exit status

os.exit may close state

new metamethods _ pairs and __ipairs

new option 'isrunning' for collectgarbage and lua_gc

frontier patterns

\0 in patterns

new option *L for io.read

options for io.lines

debug.getlocal can access function varargs

C API

main thread predefined in the registry

new functions lua_absindex, lua_arith, lua_compare, lua_copy, lua_len,
lua_rawgetp, lua_rawsetp, lua_upvalueid, lua_upvaluejoin, lua_version.

new functions 1lual_checkversion, 1lualL_setmetatable, lual_testudata,
lual_tolstring.

lua_pushstring and pushlstring return string

nparams and isvararg available in debug API

new lua_Unsigned

Implementation

max constants per function raised to 226

generational mode for garbage collection (experimental)
NaN trick (experimental)

internal (immutable) version of ctypes

simpler implementation for string buffers

parser uses much less C-stack space (no more auto arrays)

Lua standalone interpreter

new -E option to avoid environment variables
handling of non-string error messages

License



Lua is free software distributed under the terms of the MIT license reproduced
below; it may be used for any purpose, including commercial purposes, at “
absolutely no cost without having to ask us. The only requirement is that if 0S| certified
you do use Lua, then you should give us credit by including the appropriate

copyright notice somewhere in your product or its documentation. For details, see this.

Copyright © 1994-2013 Lua.org, PUC-Rio.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Last update: Fri Feb 22 09:24:20 BRT 2013


http://www.opensource.org/docs/definition.php
http://www.opensource.org/licenses/mit-license.html
http://www.lua.org/license.html

